
1. Basics of programming (C++)
C++– general-purpose programming language.

First step towards programming seems difficult and it is - for the teacher and the student - so
this step should be done very carefully. To avoid technical difficulties associated with programming
languages, we will write our first programs in pseudocode.

A way of writing an algorithm that retains the structure characteristic of code written in a
programming language is called pseudocode. It gives up strict syntactic rules in favor of simplicity
and readability.

In order to simplify learning programming as much as possible, we will limit ourselves to a few
pseudocode commands:

• As long as condition is true, repeat code – a loop that will execute code over and over again
as long as a certain condition is met,

• If condition then do code1 – a conditional statement that will execude code1 (once) only
when a specific condition condition is met. This instruction may be followed by an
additional instruction otherwise code2, which will be executed if the previous condition is
not met or otherwise, if another_condition then do code3.

• Use pin as input/output – if we want to use one of the pins, we must set it as input or output,

• Read pin logical value – allows us to read whether a given input is logical 0 or 1 (ie.: is
button connected to pin pressed or not),

• Set output pin as value 1 or 0 – allows you to set a given output to 0 or 1,

• Remember that name means value – variable that remember some value (ie. number),

• Add, subtract, multiply belowl,

• Wait time

Additionally, comments are also useful when writing more complex programs. Every line
starting with //, # and any text inside /* … */ will be ignored.

The whole difficulty of programming now comes down to translating what we would like to do
into pseudocode.

Exercise 1.1

Review examples 1 and 2, and then write pseudocode to indicate using an LED whether the
selected combination of three buttons out of five has been pressed. The LED is connected to pin 8,
while the buttons are connected to pins 2, 3, 4, 5, and 6. When an incorrect combination is pressed,
the LED should not light up.

Conditions can be combined, for example: If a is 1 and b is 1, then code.

Example 1.1

Write a program in pseudocode: Light up the LED for 0.5 seconds, then turn it off for 1 second.
The LED is connected to pin 7. Solution:

// To make the task easier for ourselves and not have to remember
// where everything is connected (right now we only have one LED
// connected to some pin, but what if there were 5 LEDs, and
// somewhere else there were other things?), let's start by saying
// that everywhere we use the word "diode", we mean "7":

Remember that diode means 7.

// Due to technical reasons, pins cannot be input and output at the
// same time. Therefore, before using them, it must be established
// whether we want to use them as input or output:

Use pin diode as OUTPUT.

// As for technical matters, we already have everything described,
// so all that remains is to perform the blinking itself.

// Since we want the LED to blink and never stop, it will be easiest
// to use a loop for this purpose. In the loop, the LED will light up,
// shine for a while, then turn off, and stay off for a while:

As long as condition always is true, repeat code {
Set diode pin output value as 1.
Wait 0.5s.
Set diode pin output value as 0.
Wait 1s.

}

Example 1.2

Write a program in pseudocode: after pressing the button, the diode lights up for 3 seconds. The
diode is connected to pin 7, the button to pin 3. If the button is pressed, the pin outputs logic 1.

To solve this task, we will use part of example 1:

//we will remember in the programe which pin the diode is connected to
//and to which button:

Remember that diode this 7.
Remember that button this 3.

//Let's set the pins as outputs and inputs appropriately:

Use pin LED as OUTPUT.
Use pin button as INPUT.

//Again, we want the program to execute indefinitely:
// wait for the button to be pressed, turn on the diode, wait, turn off
// and wait for the button to be pressed again:

Repeat endlessly {
//Let's read and remember whether the signal from button is 1 or 0:
Remember that pressed means value read from pin button.

If pressing equals 1, then execute {
Set pin diode on 1.
Wait 3s.
Set pin diode on 0.

}
}

Step two comes down to translating pseudocode into a programming language, which will later
be translated (by a computer) into machine code.

High-level language (autocode) - a type of programming language whose syntax and keywords
are designed to maximize the understanding of the program code for humans, thereby increasing the
level of abstraction and distancing itself from hardware nuances.

Pseudocode C++ (Arduino)
Repeat without end:

Turn on diode
Wait 1s.(1000ms)
Turn off diode
Wait 1s.(1000ms)

While(1){ //logical one, always true
 digitalWrite(diode,HIGH);
 delay(1000);
 digitalWrite(diode,LOW);
 delay(1000);
}

Arduino consists of an 8-bit Atmel AVR microcontroller with additional components to to make
uploading code easier and for other purposes. Microcontroller is a single-chip microcomputer, an
integrated microprocessor system implemented in the form of a single chip containing a processor,
RAM (random acces memory), input-output systems and program memory.

The program from example 1 written for Arduino:

int diode = 7; //variable definitionhey(globalhey)

void setup() { //function executed once,after turning on the
// power

 pinMode(diode, OUTPUT); //sets pin 7 as output
}

void loop() { //a part of code performed over and over again
 digitalWrite(diode, HIGH); //set pin 7 to value HIGH (logic 1)
 delay(500); //Wait 500ms = 0.5s
 digitalWrite(diode,LOW); //set pin 7 to LOW (logical 0)
 delay(1000); //wait 1s
}

As you can see, most of the instructions and the entire program are very similar to the solution
from the first example. However, a few comments are in order:

• Everything that is inside the braces {} of the function void setup(), will be execuded only
once after starting Arduino. This is a great place for e.g. setting pins as input/output or
starting RS communication (more on this later).

• Everything inside the curly braces {} of the function void loop() will be executed over and
over again when Arduino starts – it’s called main loop,

• In order not to complicate learning, we will place variable declarations at the beginning of
the program – before void setup(), and all variables will be of type int, unless otherwise
specified in this document. The int variable can take values from -32768 to 32767 (only
integer numbers). The declaration takes the form:

int diode = 7 ;

variable type variable name value assignment (optional) command end

Translation from pseudocode (Arduino programming)

In order for our programs to work, we need to translate them into C++. So let's start with a blank
program template where we will place our translations:

// place for variable declarations
// if we will be using variables somewhere (e.g., to store the read
// value from an input pin), we should inform the program about it before
// void setup(){}. For example: int press1;
// or int button3 = 4;

void setup() {
//function executed once,after turning on the power
// Here we will put things that can be done
// only once because they won't change later.
// E.g. pinMode(…).

}

void loop() {
//a function performed over and over again (without end)
// Here you will find things that the program has
// perform continuously (e.g. checking what signal
// is on input and setting something on output)

}

Very often during programming, the word condition will appear. A condition is a certain logical
or arithmetic operation that returns a value of 0 (condition not met) or 1 (condition met):

a > b or b < a a bigger than b
a >= b a greater or equal b
a == b a equal b (important, double equals!)
a != b a not-equal b

Combining terms: AND: if (condition1 && condition2){code to execute if true}

OR: if (condition1 || condition2){code}

Translations for previous pseudocode instructions

Please remember that every statement (except loops and conditional functions) must end
with a semicolon (;).

As long as condition is true, repeat code – conditional statement that will be executed only when
a specific condition is met, e.g.:

int variable = 10;

if(variable == 11){ //mind double “=”!
digitalWrite(diode1, HIGH);
digitalWrite(diode2, LOW);

}else if(variable == 10){ //optional. Can be repeated more
// than once

digitalWrite(diode1, LOW);
digitalWrite(diode2, HIGH);

}else{ //optional
digitalWrite(diode1, LOW);
digitalWrite(diode2, LOW);

}

It can be interpret as: set the variable to 10, after that check whether the variable has the value
11. If it is, light up diode 1, turn off diode 2. If not, check if it is 10 – if so turn off diode 1 and turn
on diode 2. If none previus condition was met turn off both diodes.

Use pin as… – if we want to use one of the pins, we must set it as input or output.

pinMode(pin,OUTPUT); //set pin as an output (e.g. diode)
pinMode(pin,INPUT); //set pin as input (e.g. button)

Read pin logical value – allows us to read whether a given input is logical 0 or 1,

digitalRead(10); //checks whether pin 10 is logical 0 or 1

Rading input only wouldn't make much sense, but you can save the result of the function to a
variable or use it as a CONDITION of the function (if, while e.t.c.):

//declare the variable pressed and the variable with information
// where the button is attached
int pressed = 0;
int button = 7;

//remember whether the button is pressed or not
pressed = digitalRead(button);

//if the button was pressed, turn on the diode
if(pressed == 1){

digitalWrite(diode, HIGH);
}

//if the button was not pressed, turn off the LED
if(pressed == 0){

digitalWrite(diode, LOW);
}

Set output pin as… – allows you to set a given output to 0 or 1:

digitalWrite(13, HIGH); //sets pin 13 to logical 1
digitalWrite(13, LOW); //sets pin 13 to logical0

Remember that... it's... –variables, storing numbers (characters):

variable = 12; //to remember the new value of a variable, we use a sign
// (single!) is equal to. Variable from this point on

 // will store the value 12.

Repeat { … } – the loop that will be performed as long as condition is fillfilled. One such loop is
the while loop: while(condition){function_body}, e.g.: :

variable = 0;
while(variable < 10){

digitalWrite(diode, HIGH);
delay(1000);
digitalWrite(diode, LOW);
delay(1000);
variable = variable + 1;

}

Which can be read as: set the variable to 0, then check if the variable is less than 10 - if so, turn
on the LED and wait a second, turn off the LED and wait a second. Increase the variable by one.
End of the loop - return to the beginning and again: check whether the variable is less than 10 etc...
If the condition is not met, the programskipsfor the brace }.

In an empty Arduino program, next to the void setup() function there is such a Repeat
function – a void loop() function, the content of which is executed endlessly.

Add, subtract, etc.:

variable = 3+2; //the variable will take the value 5
variable = 3 – 2; //the variable will take the value 1
variable = 3 * 2; //the variable will take the value 6
variable = 3 / 2; //the variable will be 1 (as rounded down 1.5)

//int type can store only integer values,
// so it rounds rounds down

variable++; //increase the variable by 1
variable--; //decrease the variable by 1

Wait…:

delay(1000); //the program will stop for 1s. 1s = 1000ms

Exercise 1.2

Translate to C++ example 1.2 and pseudocode from exercise 1.1.

2. Arduino basics
To learn programming using Arduino, you need some basic elements:

• Computer with Arduino IDE software (https://www.arduino.cc/en/Main/Software),

• Arduino Nano or UNO (or clone) with USB cable,

• Arrangement of buttons, diodes and other components.

OR simulator (tinkercad.com) when we don't have access to physical parts.

During the classes, ready-made systems will be used:

Version 2:

Version 3:

https://www.arduino.cc/en/Main/Software

Arduino IDE

To check if everything works launch the Arduino IDE, then in the menu Tools choose the
appropriate tiles: Board – Arduino Nano, Processor – ATmega328P (Old Bootloader), Port – one
with highest number.

Then upload the sample program Blink:

Arduino online

If you don't have access to physical equipment, you can use online simulator:
tinkercad.com/circuits

However, please bear in mind that:

• currently only Arduino UNO is available (which is compatible with NANO),

• Arduino UNO does not have the A7 output, the potentiometer must be connected to another
output marked with the letter A. Remember this when writing the programs.

• for starter, just connect the diodes, buttons and potentiometer with resistors.

For actual programming, select from the right Code and switch from block view to text view.

Examples are available on the website
https://github.com/PMKrol/WTDAutom atyka /tree/main/snap/arduino/current/Arduino/libraries/WTD/examples .

https://github.com/PMKrol/WTDAutomatyka/tree/main/snap/arduino/current/Arduino/libraries/WTD/examples
https://github.com/PMKrol/WTDAutomatyka/tree/main/snap/arduino/current/Arduino/libraries/WTD/examples
https://github.com/PMKrol/WTDAutomatyka/tree/main/snap/arduino/current/Arduino/libraries/WTD/examples
http://www.tinkercad.com/circuits

Setting/reading ports

Arduions port are places where other devices can be connected: buttons, LED’s, LCD’s and
many other.

pinMode(port, STATE); - sets port as INPUT or OUTPUT

digitalRead(port); - reads the value (0 or 1) from port

(i.e. button)

digitalWrite(port, STATE); - sets port output, to logical 0 or 1 (5V)

(i.e led)

LED_BUILTIN

in the case of Arduino NANO and UNO, it is a
variable with the value 13, to which the L diode
mounted on both Arduinos is connected

port is the pin number with the letter D omitted.
In the case of Ax ports, the letter A should be
entered in the program.

Exercise 2.1

After starting the Arduino IDE and connecting it Arduino, from the File menu, select
Examples → 01.Basics → Blink. Analyze the program and then upload the it to Arduino.

Does the program behave as expected?

Exercise 2.2

a) What should be changed in the program to replace the diode L so diode connected to D12
blinks? Verify Your idea.

b) Modify the program in such a way that the diodes blink:

• all at once,

• one by one,

• one by one back and forth.

c) Imagine two diodes, one blinking once per second, second blinking twice per second. Draw a
graph of light versus time (for both diodes – with different colored pen). Write program.

Combining conditions

If we want to place more than one condition inside the if instruction (or other conditional):

(digitalRead(3) == 1 || digitalRead(4) == 1)

– gives true if input 3 OR 4 is logical 1 (TRUE)

(digitalRead(3) == 0 && digitalRead(4) == 0)

– gives true if input 3 AND 4 are logical 0 (FALSE)

Extended conditional statement if/else/else if

Conditional statement if can be expanded by else, whose body is executed when the previous
conditions are not met. if also can be extended by else if(other condition), which is executed when
the previous conditions are not met AND other condition is met. else if can be used more than once,
else only once.

if(condition1){

//performed when satisfied condition1
}else if(condition2){

//executed when condition1 is not met and condition2 is met
}else{

//performed when previous conditions are not met
}

After condition do not enter a semicolon (;)!

Exercise 2.3

Write a program that only lights up one diode:

a) 1, 2 or 3, when corresponding button is pressed,

b) 4th if first and second button is pressed at once. 5th diode, when all three buttons are pressed.

Variables

Variables are used to conveniently remember program data under a name. Since there are different
types of data, there are also different types of variables.The basic type (for us) will be:

• int – short for „integer”. Stores numbers from -32768 to 32767

We will treat all variables as global variables – available from anywhere in the program. Global
variables are declared at the beginning of the program (before void setup()) as follows:

variable_type variable_name;

or, when we want to declare its value immediately:

variable_typevarname = value;

For example, the after declaration: int diode5 = 12;, we are abe to use word diode5 anywhere in
the program and it will be understand as 12 or any new value if we change it.

Calculations on variables

Calculations on variables behave like usual: + (addition), - (subtraction), * (multiplication), /
(division), % (rest from division).

Equal sign (=) means assigning what is on the right to what is on the left – unlike comparison (==).
E.g.:

variable8 = variable5 + 3;

Will store sum of value5 and three under name variable8.Then the command
digitalWrite(variable8,HIGH); will set port that sum port to high (and for example turn on the diode
connected to it).

Additional exercise

Write Arduino turns on, light up the third diode. When button one is pressed turn off current
diode and turn on next diode. When button three is pressed, turn off current diode and light up
previous diode.

Define new variable type int with any name. Increase value of variable by 1, when button 1 is
pressed and decrease the value of variable, if button 3 is pressed. Depending on what value it takes
turn on the appropriate diode (and turn off the others).

Additional exercise 2

Read abount function called millis() which returns value of type unsigned long containing
the time since start of Arduino in milliseconds. Do exercise 5.2c. without delay().

3. Arduino - Communication

Arduino has the ability to communicate with various other devices. The basic communication is
communication with the computer via the serial port. This allows to read and send data, control
components, etc. Most often, communication via the serial port is used to monitor what is
happening in Arduino.

Communication via serial port

Serial port – computer port through which data is transferred in the form of one string of bits.
This port is usually equipped with a special circuit (the so-called universal asynchronous
transceiver) that translates strings of bits into bytes and vice versa. In other words, it is a device that
allows you to send and receive a sequence of bytes (letters, numbers and other characters). The
Arduino serial port is connected to a USB converter, which allows direct communication via USB
with a personal computer.

Series.begin(9600); //starts serial communication,
// this command needs to be in setup().

Series.println("string"); //sends string of characters
// with newline at the end
// through the serial port.

Series.print("string"); //sends string without newline at the end.

For technical reasons, in order for Arduino to send to the computer, it must be "announced" by
adding the line to the setup function Serial.begin(9600);. Then, anywhere in the program, you
can issue the command send message with content, using e.g. Serial.print("contents");.

Exercise 3.1

a) Analyze the program code below. What message will be sent to the computer if we press the
button connected to port 5? What if we release it? What will happen if we press the button for a
long time?

intbuttonA=5;

void setup() {
 Serial.begin(9600);
 pinMode(buttonA, INPUT);
}

void loop() {
 if(digitalRead(buttonA)){
 Serial.println("Button A is pressed");
 }else{
 Serial.println("Button A is not pressed");
 }
 delay(100);
}

Open File →Examples → WTD → Komunikacja_1 or copy the program as a new sketch, then
upload it to Arduino. Start serial communication: Tools → Serial port monitor.

Does it behave as expected?

b) modify the above or write a new program that prints the appropriate text when the appropriate
two or three buttons are pressed. Add information about releasing the button.

Analog reading

Arduino, in addition to the digital functions already known, has capacity reading analog values.
These inputs are usually marked as A0-A7. To read analog value at the input, use the appropriate
function:

analogRead(port); //reads analog value at port. Returned
 // value (0-1023) corresponds to 0-5V voltage.

Exercise 3.2

• write a program that will sent via serial text "temperature" every 0.5s.

• Scheck in the diagram to which input the middle leg of the potentiometer is connected. Tell
Arduino whether this will be an input or output port (see Setting/reading ports).

• Replace text "temperature" with analogRead(PORT),where PORT is potentiometer’s middle
pin (e.g. A0, A1, A7).

• Assume that the potentiometer is an analog (linear) temperature device, while the function
analogRead() returns: 0 for temperature 0°C,1023 in temperature 40°C. How to calculate
temperature? Write a program that sends via monitor current temperature.

• Modify the program so it turns on diode after exceeding the temperature of 25°C.

Arduino can also read information (single characters) sent from the computer to it. There is a
command for thisSerial.read(). Just likeSerial.write()yes and read understands a limited

set of characters (see ASCII).

Series.available(); //checks how many characters are waiting
// for interpretation

Series.read(); //reads one character from the string sent to
 // Arduino from computer

Exercise 3.3

int sign = 0; //Place where the received character will be saved.
int diode1 = 8;

void setup() {
 Serial.begin(9600); //Start the serial port
 // at a speed of 9600 bits per second.

 pinMode(diode1, OUTPUT);
}

void loop() {
 if (Serial.available() > 0) { //If a new character is received...

 character = Serial.read(); //Remember what character was read

// but only one - the rest are 'waiting'.

 if(char == '1'){ //Attention!
 digitalWrite(diode1, HIGH); // Single character MUST be between
 // single apostrophe.
 Serial.println("I turn on LED 1.");
 }
 }
}

Open Examples → WTD → Communication_2 or copy the above program as a new sketch,
then upload it to Arduino. Start Serial port monitor. Send proper sign via monitor. Send other sign.

Does it behave as expected?

a) Modify the program so that the remaining diodes can be turned on.

b) Modify the program so that all the diodes can be turned off – by command and button.

c) Additional. Create variables that stores current state of each 5 diodes. Modify the program so
that entering e.g. 1 cause change of state of the first diode (variable and output. For example,
sending two 1s will turn on and then turn off diode 1).

4. Arduino

Communication with other devices

The serial port is not the only standard for communication between devices. Depending on the
needs, various solutions can be used: one-way or two-way, serial or parallel, digital or analog, over
short or long distances, etc.

The most popular standards and devices have their own implementations in the Arduino environ-
ment, so most of the time ready to use solutions are available. One thing to know what device You
want to use and find appropriate libraries.

Popular devices, for which the libraries are available are:

Ultrasonic rangefinder
HC-SR04

Thermometer + hygrometer
DHT22

Micro Servo
SG-90

Ultrasonic rangefinder is a device that measures the time between transmitting and receiving an
ultrasonic wave. This time (measured by Arduino, between applying a signal to the TRIG input and
the appearance of answer on the ECHO output of the device), after taking into account the speed of
sound (approx. 340 m/s) and conversion, it gives the distance. HC-SR04 is an example of device
that does not use any of the comunication standards.

DHT22 is a device communicating via the OneWire interface.

Micro servo is a servo mechanism often used in modeling and various DIY devices. It only re-
quires information in what position it should be set. After receiving such information, the servo au-
tomatically sets itself to the given position and controls it continuously.

Libraries

Additional libraries are needed to complete exercises and must be installed (in case there are not
already installed) using Tools → Library manager, where you should search for the appropriate

ones and install it (www.arduino.cc/en/Guide/Libraries):

DHTNEW by Rob Tillart, DallasTemperature,
HCSR04 (github.com/Martinsos/arduino-lib-hc-sr04),

OneWire.

Please ask Your teacher to connect devices..

4.1

a) Ultrasonic rangefinder

• Select File → Examples →WTD→ HCSR04. Analyze the program.

• Based on the example, write a program, which will send information about the current di-
stance and turn on the diode when the distance is less than 20 cm.

• Modify the program in such a way that the number of turned on diodes corresponds to the
measured distance (e.g.: 10 cm - first diode, 20 cm - second diode, etc.).

b) Temperature and humidity sensor

• Select: File → Examples →WTD → DHT. Analyze the program.

• Based on the example, write a program, which sends information about current humidity
and temperature. Turn on one diode when humidity is over 50% (or other value).
Attention! If the humidity is 999%, ask teacher for help.

• Expand the program so that when some temperature is exceeded (e.g. 27 degrees C), another
diode lights up.

• Expand the program so that when the temperature AND humidity are exceeded, all diodes li-
ght up.

• Extra (difficult): modify last point so all diodes in this case blinks.

c) Servo mechanism

• Select Examples → WTD → Servo. Analyze the program and verify its operation.

• Modify the program so that the initial value of variable potVal is 90 degrees. Use two but-
tons in such a way that one decreases the value of potVal by one, and the second increase
it. The angle of the servo should be the same as the value of potVal.

• Expand the program with a button that sets the servo drive to the initial position and 0 de-
gree.

Sources:

https://www.arduino.cc/reference/en/
Autodesk Eagle,Version 9.3.2, © 2019 Autodesk
akademia.nettigo.pl/zmienne_podstawy_jezyka_arduino/
tinkercad.com/
pl.wikipedia.org/wiki/Port_szeregowy
Arduino 1.8.9
en.wikipedia.org/wiki/Servomechanism
lastminuteengineers.com

License MIT
Patryk Król

v. E1.0

https://www.tinkercad.com/
http://akademia.nettigo.pl/zmienne_podstawy_jezyka_arduino/
https://www.arduino.cc/reference/en/

	Exercise 1.1
	Translation from pseudocode (Arduino programming)
	Translations for previous pseudocode instructions
	Variables
	Calculations on variables

